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VMI 2.0: A Dynamically Reconfigurable
Messaging Layer for Availability, Usability, and

Management

Scott Pakin and Avneesh Pant

Abstract—As system area networks (SANs) grow in size,
and organizations pool their SANs over the wide area into
even larger compute platforms (commonly known asgrids),
it becomes increasingly difficult both to manage and to ex-
ploit the available resources. The key issues is the space
of grid computing are availability, reliability, and man-
agement. Availability is an issue, as network hardware is
more likely to fail in a large network than in a small one.
Usability is an issue, as different SANs use different net-
works, and inter-SAN communication frequently uses dif-
ferent networks from intra-SAN communication. And man-
agement is an issue, as it is more difficult to find and isolate
problematic components of a large, heterogeneous system
than a small, homogeneous one.

This paper introduces VMI 2.0, a middleware communi-
cation layer that addresses the issues of availability, usabil-
ity, and management in the context of large-scale SANs in-
terconnected over wide-area grids. Novel features include
the ability to stripe data across heterogeneous networks,
the ability to fail over from one network onto a heteroge-
neous network, and the ability to add data filters and other
features dynamically, remotely, and even on per-connection
bases.

I. I

WHEN gigabit networks, such as Myrinet [1],
Giganet [2], and Gigabit Ethernet [3], started

to become commonplace on workstation clusters, the
communication performance bottleneck shifted from
network hardware to the messaging software. A
number of highly optimized messaging layers—Fast
Messages [4], Active Messages [5], and U-Net [6],
to name a few—arose to bridge the gap between the
performance achievable by the hardware and that ob-
served by applications. As a result of these efforts,
applications can observe point-to-point communica-
tion performance near that achievable by the raw net-
work hardware.
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A. Motivation

Given point-to-point communication at near-
hardware speeds, the next big challenge for cluster
and grid computing is to provide features and ser-
vices that enhance availability, usability, and man-
agement. This was our goal when implementing
VMI 2.0, the second version of the Virtual Machine
Interface communication middleware running at the
National Center for Supercomputing Applications
(NCSA).1

Grids—collections of SANs, storage servers,
and other resources that lie scattered across the
Internet—are a difficult environment to harness.
However, because of their inherent scalability, they
can serve as a source of massive computation power.
Unlike a typical SAN, a grid is composed of het-
erogeneous networks, CPUs, and operating systems.
Metacomputing systems such as Globus [7] and Le-
gion [8] provide services to applications which are
distributed across the grid. Examples of these ser-
vices include authentication and authorization, di-
rectory and naming services, and high-level file I/O.
Note that all of these services rely on lower-level
communication layers—usually sockets over IP—to
manage the actual communication.

This paper introduces VMI 2.0, our new middle-
ware communication layer. Like a sockets layer, it
abstracts away the underlying communication inter-
faces and presents higher-level communication lay-
ers with a consistent view of the network (Figure 1).
Unlike a sockets layer, though, VMI 2.0 can aggre-
gate a number of disparate communication interfaces
into a coherent whole. For this to work, VMI 2.0
must be cognizant of a variety of interface-specific
communication details:

1Currently, VMI 1.0 is used by all applications on all of NCSA’s
production clusters.

mailto:spakin@ncsa.uiuc.edu
mailto:apant@ncsa.uiuc.edu
http://www.ncsa.uiuc.edu
http://www.ncsa.uiuc.edu
mailto:spakin@ncsa.uiuc.edu
mailto:apant@ncsa.uiuc.edu


2

Application

MPI Sockets Globus Legion

VMI 2.0

VIA GM TCP

InfiniBand Myrinet GigE

Fig. 1

R  VMI 2.0   

Flow control If a receiver has no space to
receive a message, does the
sender block, or is the mes-
sage dropped?

Buffer managementDo memory regions have to
be registered before they can
hold communication data?

Packetization How large of a message can
the interface send at once?
What message sizes are most
efficient?

Error detection Does the interface detect
data errors? Link errors? Or
is data silently dropped?

Message ordering Does the interface deliver
data in order?

It is unreasonable to expect application writers—
or even metacomputing service providers—to know
all of the characteristics of all of the networks that
a progam will run on. Sockets interfaces do hide
most of these details; however, they are too heavy-
weight a solution and, as a result, tend to perform
poorly on SANs relative to lighter-weight interfaces.
As Figure 1 illustrates, VMI 2.0 serves as the mid-
dleware layer that bridges heterogeneous interfaces
with metacomputing servers, such as Globus and Le-
gion, and higher-level programming interfaces, such
as MPI [9] or even sockets.

B. VMI 1.0

VMI 1.0 [10] was our first attempt at transparently
aggregating multiple lower-level communication in-
terfaces. The goal was to enable binary portability
of MPI applications across NCSA’s various clusters.
These clusters—sometimes even sets of nodes within
a single cluster—contain dissimilar network config-
urations. Some may have experimental new network

interfaces on a few nodes; others may lack a particu-
lar interface while awaiting a replacement for a failed
part.

VMI 1.0 defines a basic network abstaction that
supports point to point communication. To handle
interface-specific communication details, VMI 1.0
uses dynamically loadable modules, each of which
implements a simple API (send, receive, connect,
disconnect, etc.) in terms of whatever a particu-
lar network interface provides. During initialization,
a process loads the modules listed in a machine-
specific configuration file, which describes the net-
work interfaces that that machine contains.

C. VMI 2.0

After VMI 1.0 ran for some time on NCSA’s pro-
duction clusters, we found that users appreciated the
ability to run their applications unmodified on differ-
ently configured clusters. In particular, users liked
being able to use shared memory for high-speed
communication within an SMP and without needing
to know in advance which processes would lie in the
same SMP. In addition, cluster administrators liked
being able to mark a network as unavailable (e.g., for
upgrades) merely by commenting out the apppropri-
ate line in the machine-specific configuration file.

Extended use of VMI 1.0 revealed a number of
limitations of its design. First, only at process startup
time could a process select a network to use to com-
municate with each of its neighbors. If a network
card or switch failed, the application would need to
be restarted, even if an alternate network could be
used to restore global connectivity. Ideally, a mes-
saging layer should transparently switch the applica-
tion onto an alternate network. Second, it is common
for NCSA’s clusters to contain multiple networks,
such as Gigabit Ethernet and Myrinet, yet a VMI 1.0
process statically determines which of those to use
to contact each of its peers. Ideally, a messaging
layer should stripe data across all available networks
to achieve better bandwidth. Third, there is no way
to monitor the health of all of the cluster’s networks
from a remote workstation. And while it was nice
that an administrator could mark networks as avail-
able or unavailable, his changes would apply only to
new jobs, not to running ones. Ideally, a messaging
layer should provide remote monitoring and manage-
ment. Finally, VMI 1.0 was designed for SANs and
parallel programs—static sets of mutually cooper-
ating processes that communicate over low-latency,
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high-bandwidth, low-error networks. However, the
advent of the TeraGrid project (and NCSA’s partic-
ipation therein) necessitates a messaging layer that
can work efficiently over both wide-area links and
SANs and that can handle dynamic client/server and
peer-to-peer communication patterns in addition to
static, mutually cooperating processes.

VMI 2.0 is the result of those desiderata. While
VMI 2.0 retains VMI 1.0’s multiple-network sup-
port, it is a completely redesigned messaging layer
that greatly expands upon its predecessor. We identi-
fied the following features as those necessary to en-
hance the availability, usability, and management of
grid and cluster communication.

1) Data striping across heterogeneous networks:
By striping data across multiple networks, a messag-
ing layer can achieve greater communication band-
width than were it limited to a single network. Be-
cause VMI 2.0 runs above the lower-level, device-
specific messaging layers, it is able to stripe data not
just across multiple networks of the same type, but
also across heterogeneous networks. As far as we
know VMI 2.0 is the first messaging layer to support
heterogeneous data striping.

2) Failover across heterogeneous networks:Em-
ploying a similar mechanism to that used for striping,
VMI 2.0 can also do heterogeneous failover. If, for
example, a Gigabit Ethernet cable comes unplugged,
or a Myrinet switch is powered off, an application
can transparently continue to utilize a remaining net-
work. As far as we know VMI 2.0 is the first mes-
saging layer to support heterogeneous failover.

3) Scalability upwards of many thousands of
nodes: Not only are organizations such as NCSA
building individual clusters consisting of thousands
of compute nodes, but an effort is underway to link
thousands of clusters together into an Internet-wide
grid of available compute power. To be effective in
a grid environment, VMI 2.0 localizes all decision-
making to minimize the impact of wide-area delays
on SAN performance.

4) Dynamic feature configuration: VMI 2.0
utilizes a “plug-in” module interface, with which
VMI 2.0’s features can be extended. Because these
modules can be installed into and removed from run-
ning programs, an application need load only those
modules that are actually required, thereby not sac-
rificing performance on unused features. Modules
can be global to an entire application or local to an
individual network connection. For example, an ap-

plication may load a profiling module to profile all
network traffic but load an encryption module only
on those links that traverse clusters.

5) Portability: All of the concepts underlying
VMI 2.0’s design are platform independent; only
a few isolated functions need to be rewritted to
port VMI 2.0 to a new operating system or proces-
sor architecture. VMI 2.0 currently runs on Intel
IA32 and IA64 systems as well as on Sony’s MIPS-
based PlayStation 2 (!). Different networks are sup-
ported with modules. Merely by writing a module
to interface to a (typically vendor-supplied) lower-
level messaging layer, a developer can utilize all of
VMI 2.0’s features on a new type of network.

6) Remote monitoring: A system administrator
can manully assess the health of a single applica-
tion running on a small cluster. By integrating pro-
cess monitoring into the VMI 2.0 middleware, we
helps users ensure that their applications are running
smoothly on an Earth-spanning cluster of clusters
and system administrators see which nodes or net-
work hardware need repairs.

7) Remote management:Not only does VMI 2.0
make process state visible across the Internet, but
it provides control over individual nodes and pro-
cesses (or groups thereof). For instance, a user trying
to debug a program can dynamically load a packet-
logging module into a running application—and un-
load the module when the bug is found. Using a sim-
ilar mechanism, a system administrator can mark a
particular network unavailable before upgrading its
device drivers or firmware. (VMI 2.0 could then fail
over onto one of the other networks, transparently to
running applications.)

8) Support for both parallel and distributed com-
puting models: VMI 2.0, like VIA [11], deals ex-
clusively with point-to-point connections; it has no
concept analogous to an MPI communicator [9], a
group of processes exhibiting mutual trust. The con-
nection approach, although a lower-level abstrac-
tion, can be used to implement both the parallel-
computing model (e.g., MPI) and the distributed-
computing model (e.g., most transaction systems).

Of course, it is important to provide all of
the aforementioned features without sacrificing raw
communication performance.

The rest of this paper is organized as follows. Sec-
tion II describes the VMI 2.0 architecture and how
we were able to achieve the goals listed above. We

http://www.teragrid.org
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evaluate the performance of VMI 2.0 in Section III.
In Section IV we describe the research projects that
are most closely related to VMI 2.0. Finally, we draw
some conclusions about VMI 2.0 in Section V.

II. I

VMI 2.0 is implemented as a user-level messag-
ing layer plus a set of dæmon processes. The basic
architecture is modeled after the Windows NT kernel
architecture [12]. The reason we used NT as a design
basis is that we believe the architecture is extremely
extensible, yet exacts minimal performance penalty
due to its inherent asynchronicity—features we find
as applicable to messaging layers as to operating sys-
tems.

A. IRB processing model

VMI 2.0 devices, the loadable modules that talk to
the network or filter communication data, are linked
together on chains. VMI 2.0 initially defines two
chains—the default send chain and the default re-
ceive chain—although more can be created dynam-
ically. When a message is sent, each device on the
send chain has an opportunity to modify it (e.g., to
transform the data or attach a header) before pass-
ing the message to the next device and finally into
the network. Similarly, when a message is received,
each device on the receive chain has an opportunity
to modify it (e.g., to transform the data or remove a
header) before passing the message to the next device
and finally to the application.2

Messages and control instructions are passed be-
tween devices exclusively usingI /O request blocks
(IRBs). Figure 2 depicts the key fields within an
IRB. IRBs contain a stack, a status field used for
return values, the connection the IRB is associated
with, and miscellaneous other pieces of state. The
most important is the IRB stack. Each element of the
stack encapsulates the state for one of the devices
on the chain that the IRB was dispatched onto. The
command field specifies the current IRB type (Ta-
ble I). Message data is passed to the device with the
slab field, and other data is passed in and out with the
input args and output args fields. When dispatching
a new IRB or forwarding an existing IRB, a device

2In the context of this paper, “application” can also mean a higher-
level messaging layer, such as MPI [9].

can specify a function to call when the IRB is com-
pleted and a context (an arbitrary pointer) to pass to
that function.

When an IRB reaches the last device on a send
chain (known as a “sink device”), the device has two
options for dealing with the IRB. If the IRB can
be processed immediately, the devicecompletesthe
IRB, causing all of the completion functions to be
called. If, however, a long IRB processing delay is
expected (as in the case of a connect IRB), the device
pendsthe IRB and completes it (asynchronously) as
soon as it can. Pending an IRB enables the applica-
tion to make progress even when VMI 2.0 is stalled.

B. Data model

VMI 2.0 encapsulates data using a number of dif-
ferent data structures. (Figure 3). At the lowest
level is abuffer, which represents a contiguous block
of memory that can be transmitted over a network.
Most user-level messaging layers, such as VIPL [11]
and GM [13], require data to be “registered” (which
usually implies pinning it into physical memory) be-
fore it can be used in a communication operation.
The VMI 2.0 API contains calls to register and dereg-
ister buffers, and these calls are forwarded to the
source and sink devices on demand.

Because buffer registration is usually expensive
and typically restricted to page-aligned regions
whose size is a multiple of the OS page size, it would
be inefficient to register every piece of communica-
tion data individually. VMI 2.0 therefore defines a
buffer op structure, which represents a contiguous
block of memory within a buffer. A slab contains
multiple buffer ops and is used to represent discon-
tiguous data. To reduce memory copies and improve
performance, VMI 2.0 implements gather and scat-
ter operations. These are implemented in terms of
adding (respectively, removing) buffer ops to (re-
spectively, from) slabs. An interesting capability that
VMI 2.0 provides to higher-level messaging layers is
the ability to “grab” a slab. That is, if a slab arrives
from the network, but a messaging layer is unable
to process the data immediately, the messaging layer
can acquire ownership of the slab. The VMI 2.0 core
and loadable devices are then prohibited from recy-
cling the slab memory. After processing the data, the
messaging layer releases ownership back to VMI 2.0,
which can then reuse the memory. The importance of
slab-grabbing is that it obviates the need to copy data
when it cannot be processed immediately.
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TABLE I

IRB 

Type Meaning to a device

Attach Attach yourself to the specified chain.
Detach Detach yourself from the specified chain.
Connect Establish a connection to the specified peer.
Disconnect Tear down the given connection.
Connect request A given peer wants to connect to us.
Disconnect request A given peer wants to disconnect from us.
Send Send the given slab on the given connection.
Receive A slab has arrived on the given connection.
Alert Notify an administrator to a given error condition.
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Slabs are transmitted as datagrams on astream,
which is a directional connection between two pro-
cesses. There can be any number of streams linking
two processes. That is, the data within a slab are al-
ways delivered in the order sent, but slabs are deliv-
ered unordered relative to each other. Each streams is
associated with a bidirectionalconnection. At most
one connection binds each pair of processes, and it
is assumed that connection setup is comparatively
costly, while stream setup is comparatively cheap.

C. VMI 2.0 core

Table II enumerates the components that consti-
tute the VMI 2.0 core. Only the Connection Manager
and Stream Manager are aware of remote processes.
All of the other components work exclusively with
local VMI 2.0 objects. At startup, a process loads
whatever devices it needs (using the Device Man-
ager), uses the Chain Manager to order these devices
on various device chains—send chain, receive chain,
alert chain, and any other chains the process needs—
and establishes connections with remote processes
(using the Connection Manager). To send a message,
the process associates the data with a set of buffers
and buffer ops3 (using the Buffer Manager), gathers
the buffer ops into a slab (using the Slab Manager),
and calls upon the Stream Manager to send the data.
The Stream Manager dispatches a send IRB (using
the I/O manager) down the send chain. The final de-
vice on the send chain injects the message into the
network. The reverse operations occur on the receive
side, with the message being received by a device,
which then dispatches an IRB up the receive chain.
The Stream Manager picks the transformed message
off of the receive chain and delivers the message to
the process.

The VMI 2.0 core is divided into separate man-
agers for modularity. Although the current static
linkage ensures availablility, we plan eventually to
offload as many managers as possible into dynam-
ically loadable devices. This will enable parts of
VMI 2.0 to be upgraded or customized indepen-
dently of other parts. For example, a replacement
Connection Manager might use a directory server to
query remote process status. Or a replacement De-
vice Manager might download missing device files
from the Internet on demand, install them, and con-
tinue running.

3A buffer is analogous to a VIA [11] memory region, and a buffer op
is analogous to a VIA descriptor.

D. Dæmons

VMI 2.0 provides remote monitoring and manage-
ment facilities, which enables users and system ad-
ministrators to observe and control applications and
computers. These facilities are embodied in a col-
lection of dæmon processes. Because VMI 2.0 is
designed to handle enormous systems organized not
merely as SANs, but as collections of large SANs
distributed across the Internet, scalability is a key
concern. The VMI 2.0 dæmons are therefore orga-
nized hierarchically, as described in Table III.

VMI 2.0 includes a monitoring library that pro-
vides all of the back-end functionality that a moni-
toring application needs to acquire detailed informa-
tion about any node or VMI 2.0 process on the grid.
To date, we have implemented an application called
Yama that gathers data with the monitoring library
and uses that data to present a 3-D view of all of the
SANs, nodes, and VMI 2.0 processes on the grid.
Because any front end can use the monitoring library,
other user interfaces are possible, as well. Devel-
opers can therefore implement customized interfaces
for their particular interests and uses of the grid.

III. E

Section II described the implementation of
VMI 2.0 and how its novel IRB-based architecture
and support for dynamically loadable modules yield
extreme usage flexibility. In Section III, we analyze
the efficiency of VMI 2.0’s design. Our goal is to
demonstrate that VMI 2.0’s flexibility does not come
at too high of a price, i.e., that a cluster’s availability,
usability, and management can be increased without
exacting an undue amount of performance.

It is difficult to devise an experimental setup
to fairly analyze a system that is as dynamic and
reconfigurable as VMI 2.0. We chose to use a
consistent—albeit non-minimal—configuration for
all of the experiments in this section. In this config-
uration, VMI 2.0 loads two devices on each chain: a
GM+Myrinet source/sink device and a “transfer” de-
vice, a somewhat complex intermediate device that
handles device failover.4 Although the transfer de-
vice serves little purpose in a one-network configu-
ration, we include it in our configuration to demon-
strate that even a large device does not contribute no-
ticeably to the critical path of communication. At

4The transfer device will eventually also handle data striping, but
that feature is not yet functional at the time of this writing.
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TABLE II

VMI 2.0  

Subsystem Remote Operations

Alert Raise alert
Buffer Allocate, deallocate, register, and deregister buffers; allocate and deallo-

cate buffer ops (operations on data within a buffer)
Chain Allocate/deallocate chains, attach/detach devices to chains
Connection ✔ Establish and tear down connections with peer processes
Device Load/unload devices, poll devices
I/O Dispatch IRB, complete IRB, pend IRB
Slab Allocate/deallocate slabs, push/pop buffer ops onto a slab, copy data from

a slab
Stream ✔ Begin stream, send a slab, end stream

TABLE III

VMI 2.0 

Dæmon Number Purpose

VMIeyes One per node Keeps track of all of the VMI 2.0 processes on the node and the state
of each process’s devices. Forwards management messages from the
Reaper dæmon to a process’s management device (if any). Forwards
event notifications from processes to the Reaper.

Reaper One per SAN Keeps track of all of the VMIeyes dæmons in the SAN. Used by the
Nark dæmon to query or control the state of any node or process in
the SAN.

Nark One per grid Keeps track of all of the Reaper dæmons in the grid. Used by mon-
itoring and management applications to query or control the state of
any node or process in the grid.

a minimum, the transfer devices redispatches every
IRB it receives, because it needs to receive the final
IRB return code to detect if the IRB has failed and
cannot be retransmitted on the same network (e.g.,
due to a hardware failure). If we can show that this
additional IRB processing does not noticeably de-
grade performance, we can claim that the IRB model
is a reasonable way to achieve dynamicity in a mes-
saging layer.

We ran our experiments on a cluster comprised of
1 GHz x86 processors and interconnected with both
Myrinet and Gigabit Ethernet.

A. Point-to-point performance

We start by examining VMI 2.0’s raw bandwidth
and latency performance. Figure 4 shows the band-
width of our baseline VMI 2.0 configuration (labeled

“GM and Xfer devices” in the figure) as message size
varies. To determine the overhead caused by the
transfer device, we compare this to the bandwidth of
a configuration in which the transfer device is absent
(GM device only). The third curve in Figure 4 repre-
sents the bandwidth measured by the (non-VMI 2.0)
bandwidth program that ships with GM (Raw GM).

There are two observations one should make from
looking at Figure 4. First, the difference between
the GM and Xfer devices andGM device only curves
is negligible. This is a good sign, because it shows
that the extra overhead caused by IRB allocation, dis-
patch, transfer, and completion plus all of the device-
specific overhead does not impact raw bandwidth.
We can therefore hypothesize that adding more de-
vices would likely add no more cost than the differ-
ence between theGM and Xfer devices andGM device
only curves.
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The second observation is that VMI 2.0 is nearly
as fast as the underlying GM layer for small mes-
sages. Unfortunately, as message size increases,
VMI 2.0 peaks out at only 155 MB/s, relative to
GM’s 166 MB/s. This discrepancy corresponds to an
overhead of 0.8µs on VMI 2.0’s long-message criti-
cal path, corresponding primarily to buffer manage-
ment and data reordering. The other Hockney param-
eters aret0 = 8.67µs for GM, 9.47µs for VMI 2.0,
andn1/2 =1,329 for GM, 1,530 for VMI 2.0.

Figure 5 shows the VMI 2.0 latency, which has
a minimum of 16.52µs when the transfer device is
used, 14.93µs when it is not. For comparison, GM’s
minimum latency is 10.37µs. While VMI 2.0 adds a
large percentage to the raw GM latency, the per-byte
cost does diminishes with increased message size.
This was largely to be expected. Because VMI 2.0
passes data by reference (as illustrated in Section II-
B), it rarely needs to copy data. As a result, the com-
paratively slow-growing per-packet and per-message
costs account for most of the variable part of the to-
tal.

B. Overhead analysis

To further reduce VMI 2.0’s overhead and latency,
we must first determine where the communication
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VMI 2.0 

bottlenecks lie. Figure 6 contains a timeline of a
message transmission and reception, with each note-
worthy event labeled with its duration. Time flows
from top-to-bottom on the page.5.

The largest single cost is the overhead observed by
the GM device when preparing data to be injected
into the network. IRB handlng tends to be fairly
inexpensive, though—usually taking under 0.15µs.
This is promising, because it justifies VMI 2.0’s IRB
model as not being inherently slow. Rather, the de-
vices are what need to be optimized.

As a point of explanation, after sending a message,
a process can compute for an arbitrary length of time.
The subsequentComplete IRBs occur when VMI 2.0
is polled for possible progress.

C. Application performance

As the final experiment used to investigate the per-
formance impact of adding VMI 2.0 to the critical
path of communication, we used MILC [14], a large,
SU(3) lattice gauge theory application framework.
We ran theks dynamical application, a simulation
using dynamical Kogut-Susskind fermions.

5For space reasons, the receiving process is shown to the left of the
sending process instead of below it.

http://physics.indiana.edu/~sg/milc.html
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VMI 2.0  

The experimental setup we used for MILC is
slightly different from that used in the previous ex-
periments. MILC is an MPI application, but we
have not yet had time to port MPI to VMI 2.0.
We do, however, have MPI running atop VMI 1.0.
Hence, we decided to take advantage of VMI’s
support for dynamic modules and quickly wrote a
VMI 1.0 device called “VMIVMI”, which links with
the VMI 2.0 library and implements the VMI 1.0 API
in terms of the VMI 2.0 API. For our experiment,
we benchmarked MILC with problem sizeL = 14
(≈7 minutes/run). We used three device configura-
tions (Figure 7):
• VMI 1.0 atop a VMI 1.0 GM device
• VMI 2.0 atop a VMI 1.0 TCP device
• VMI 1.0 atop a VMI 2.0 device, which, in turn,

lies atop a VMI 2.0 GM device

MILC
MPI

VMI 1.0
VMI 1.0
VMIVMI

VMI 1.0 VMI 1.0 device
GM TCP VMI 2.0

device device VMI 2.0
GM

device

Fig. 7

C   MILC

Figure 8 shows the performance results in terms
of MFLOPS/node. For small numbers of nodes, the
performance of the three configurations is similar.
However, for larger numbers of nodes, theVMI1+GM
andVMI1+VMI2+GM curves remain near each other,
while theVMI1+TCP performance drops off.

The conclusion we can draw from this is that
VMI 2.0’s overhead is low enough that VMI 2.0 does
not significantly degrade application performance.
That conclusion is based on two facts:
• MILC is sensitive to network performance,

as evidenced by the high-overheadVMI1+TCP
performing noticeably worse than the low-
overheadVMI1+GM.

• Adding VMI 2.0 to the critical communica-
tion path does not introduce enough overhead
to greatly reduce MILC performance, as evi-
denced by the small distance betweenVMI1+GM
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A  (MILC)

andVMI1+VMI2+GM.
In short, on both microbenchmarks and real appli-

cations, VMI 2.0 can add availability, usability, and
management features without adversely affecting the
performance of the underlying messaging layer.

IV. RW

VMI 2.0 provides a wealth of features and capabil-
ities. While there is no exactly comparable system,
the following works overlap ours in important ways.

Coll, et al. [15] investigated a number of trade-
offs and design decisions surrounding multirail net-
works (i.e., multiple networks per node). They fo-
cused particularly on the dynamic selection of net-
works and the cost of using local versus global state
when selecting. VMI 2.0, which implements data
striping, can build upon Coll, et al.’s simulation re-
sults, which we hope will further increase VMI 2.0’s
performance.

While Coll, et al.’s study involved a comparatively
large number of homogeneous networks (up to seven
per node), Lumetta, et al.’s Clumps work [16] exam-
ined the tradeoffs in a high-speed messaging layer
when using exactly two heterogeneous networks per
node: an SMP bus for intra-node communication
and a Myrinet network for inter-node communica-
tion. Although VMI 2.0 supports an arbitrary num-
ber of heteogeneous networks per node, many of the
Clumps findings, such as the benefits of adaptively
adjusting polling frequency on a per-network basis,
are still applicable to VMI 2.0.

As mentioned in Section II, VMI 2.0’s basic archi-
tecture is modeled after that used in the Windows NT
kernel [12]. Both VMI 2.0 and NT contain a set
of core services (“managers”) that implement only
basic functionality and a set of dynamically load-
able modules that extend the basic functionality with
more task-specific features. In both systems, the
loadable modules can either talk directly to physi-
cal devices or modify data as it flows to or from an-
other module. And in both systems, inter-module
communication is performed quickly and statelessly
by passing a generic structure (“IRB” in VMI 2.0,
“IRP” in NT) from module to module. The reason
we modeled VMI 2.0’s architecture after NT’s is that
we believe the design is extremely extensible, yet ex-
acts minimal performance penalty due to its inherent
asynchronicity.

We also drew inspiration from the Virtual Inter-
face Architecture (VIA) [11]. As Table IV shows, the
VMI 2.0 data model bears a strong resemblance to
VIA’s. Both models allow gathering and scattering.
Both expose memory registration at the API level.
Both have notions of ordered units of data sent within
larger, unordered units. And both are connection-
oriented but support fast, logical connections within
an established “physical” connection. The ability to
grab slabs comes from Converse [17], which has an
analogous feature.

V. C

Thanks to user-level messaging layers, near-
hardware communication performance is often avail-
able to applications running within a SAN. We claim
that availability, usability, and management are the
next logical step needed to make wide-area clusters
of SANs a feasible platform for high-performance
computing. VMI 2.0 is the result of our efforts to pro-
duce a middleware layer that can tame these complex
grid environments. VMI 2.0 both augments its base
functionality and interfaces with lower-level messag-
ing layers through “devices”—loadable modules that
can transform and communicate data. Using these
devices, VMI 2.0 provides the unique capability of
being able to fail over from a downed network to a
working one, even when the networks are of differ-
ent types. This is done transparently; applications
are unaware of their communication being switched
from one network to another. With a similar mecha-
nism, VMI 2.0 can aggregate bandwidth by striping
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TABLE IV

A  VMI 2.0  VIA  

VMI 2.0 VIA Meaning

connection connection “Physical” connection between pairs of processes
stream send/receive queue Logical connection within a physical connection
slab descriptor Scattered/gathered (i.e., discontiguous) message
buffer op data segment Contiguous fragment of data within a message
buffer memory region Contiguous region of registered memory

data across multiple networks, again, even heteroge-
neous ones.

VMI 2.0 devices are a powerful abstraction. They
enable users and system administrators to load and
unload features at run time, thereby incurring no
penalty for unused features. Devices can be loaded
on a per-connection basis. This facilitates grid com-
puting by enabling different forms of communication
to occur within a SAN and between SANs. For ex-
ample, an encrpytion device might be used for inter-
SAN communication but not intra-SAN communi-
cation. Network devices negotiate connectivity with
their remote peers; while a TCP device can connect
any two VMI 2.0 processes on the grid, a Giganet de-
vice can communicate only with peers that are in the
same SAN, and a shared-memory device can com-
municate only with peers that are in the same com-
puter. This protocol negotiation is abstracted away
from the application, which requests connections,
but need not specify which network(s) to use to es-
tablish those connections. As a result, VMI 2.0 pro-
vides binary portability across grid configurations.
That is, an application that runs over an InfiniBand
network in one SAN can run without modification
over a FibreChannel network in another SAN or even
over a grid that links those two hybrid SANs together
using ATM.

VMI 2.0 integrates a remote monitoring and man-
agement interface. With the help of a set of dæ-
mon processes, network repair personnel can localize
failed network connections from a single interface; a
user can add a profiling device to a running appli-
cation, profile the application’s communication be-
havior, and remove the profiling device once enough
data has been collected; and a system administrator
can instruct running applications to transfer over to
a backup network, upgrade the primary network’s
firmware, and then allow the running applications

to resume using the primary network. The VMI 2.0
dæmons are organized hierarchically and designed to
minimize communication over higher-latency links.

VMI 2.0’s flexibility and extensibility are due to its
novel design, which separates core subsystems that
provide only basic functionality, from loadable de-
vices, which manipulate and communicate data us-
ing a generic, IRB-based interface, from external dæ-
mons, which shuttle control and status messages be-
tween VMI 2.0 processes and monitoring and man-
agement applications. As this paper makes clear,
VMI 2.0’s architecture makes it an innovative way to
increase the availability, usability, and manageability
of heterogeneous clusters of clusters and a promising
means to harness the immense computing power of
this promising new platform.

VI. FW

VMI 2.0’s ability to load generic devices onto
a chain opens up limitless avenues for future re-
search. For example, one could use VMI 2.0 as
a vehicle for investigating the performance poten-
tial of compressing data before injecting it into the
network. If different applications are found to per-
form better with different compression algorithms, it
is a simple matter for VMI 2.0 to dynamically load
the the most appropriate compression device for a
given application. A follow-on project could be to
study grid-based computing where some nodes ex-
hibit asymmetric communication performance. A
number of home networks—cable modems, ADSL,
even 56K modems—give greater bandwidth in one
direction than the other. By enabling different de-
vices to be loaded on each connection, VMI 2.0
makes it possible to compress only in the low-speed
direction while leaving data uncompressed in the
high-speed direction.

In addition to pursuing new research ideas through
VMI 2.0 loadable devices, future work also includes



12

adding new IRB types for enhanced functionality and
performance. For instance, new IRBs may be used to
support collective-communication operations, such
as barriers, reductions, and multicasts, or one-sided
operations, namely P and G. These could be im-
plemented natively by networks and network inter-
faces that support them (e.g., InfiniBand [18] sup-
ports multicasts and P/G) and emulated on net-
works that do not. Because the IRB protocol speci-
fies that a device must forward an unknown IRB to
the next device in the chain, new IRB types will not
break existing devices. Another major feature that
could be implemented by extending the existing set
of IRBs would be support for quality of service guar-
antees or real-time communication. A QoS device
could manage the service negotiation and schedul-
ing, using multiple devices either for higher schedu-
lable bandwidth or for the ability to honor service
guarantees even in the presence of network failures.

Finally, a noteworthy necessity for VMI 2.0 is a
set of policy decisions for data striping. Additional
research is needed to determine how best to divide
data across heterogeneous networks, each of which
is optimized for a different range of message sizes
and each of which exhibits different bandwidth, over-
head, and—on a per-connection basis—latency char-
acteristics.
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